BOLD cardiorespiratory pulsatility in the brain: from noise to signal of interest

Author:

Delli Pizzi Stefano,Gambi Francesco,Di Pietro Massimo,Caulo Massimo,Sensi Stefano L.,Ferretti Antonio

Abstract

Functional magnetic resonance imaging (fMRI) based on the Blood Oxygen Level Dependent (BOLD) contrast has been extensively used to map brain activity and connectivity in health and disease. Standard fMRI preprocessing includes different steps to remove confounds unrelated to neuronal activity. First, this narrative review explores how signal fluctuations due to cardiac and respiratory activity, usually considered as “physiological noise” and regressed out from fMRI time series. However, these signal components bear useful information about some mechanisms of brain functioning (e.g., glymphatic clearance) or cerebrovascular compliance in response to arterial pressure waves. Aging and chronic diseases can cause stiffening of the aorta and other main arteries, with a reduced dampening effect resulting in greater transmission of pressure impulses to the brain. Importantly, the continuous hammering of cardiac pulsations can produce local alterations of the mechanical properties of the small cerebral vessels, with a progressive deterioration that ultimately affects neuronal functionality. Second, the review emphasizes how fMRI can study the brain patterns most affected by cardiac pulsations in health and disease with high spatiotemporal resolution, offering the opportunity to identify much more specific risk markers than systemic factors based on measurements of the vascular compliance of large arteries or other global risk factors. In this regard, modern fast fMRI acquisition techniques allow a better characterization of these pulsatile signal components due to reduced aliasing effects, turning what has been traditionally considered as noise in a signal of interest that can be used to develop novel non-invasive biomarkers in different clinical contexts.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3