Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation

Author:

Zhao Yue,Dai Guojun,Borghini Gianluca,Zhang Jiaming,Li Xiufeng,Zhang Zhenyan,Aricò Pietro,Di Flumeri Gianluca,Babiloni Fabio,Zeng Hong

Abstract

Accurate detection of driving fatigue is helpful in significantly reducing the rate of road traffic accidents. Electroencephalogram (EEG) based methods are proven to be efficient to evaluate mental fatigue. Due to its high non-linearity, as well as significant individual differences, how to perform EEG fatigue mental state evaluation across different subjects still keeps challenging. In this study, we propose a Label-based Alignment Multi-Source Domain Adaptation (LA-MSDA) for cross-subject EEG fatigue mental state evaluation. Specifically, LA-MSDA considers the local feature distributions of relevant labels between different domains, which efficiently eliminates the negative impact of significant individual differences by aligning label-based feature distributions. In addition, the strategy of global optimization is introduced to address the classifier confusion decision boundary issues and improve the generalization ability of LA-MSDA. Experimental results show LA-MSDA can achieve remarkable results on EEG-based fatigue mental state evaluation across subjects, which is expected to have wide application prospects in practical brain-computer interaction (BCI), such as online monitoring of driver fatigue, or assisting in the development of on-board safety systems.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference49 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential effects of slow deep inhalation and exhalation on brain functional connectivity;2023 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT);2023-07-14

2. Cross-task-oriented EEG signal analysis methods: Our opinion;Frontiers in Neuroscience;2023-03-09

3. EMCI: A Novel EEG-Based Mental Workload Assessment Index of Mild Cognitive Impairment;IEEE Transactions on Biomedical Circuits and Systems;2022-10

4. Driver drowsiness detection methods using EEG signals: a systematic review;Computer Methods in Biomechanics and Biomedical Engineering;2022-08-19

5. EEG-FCV: An EEG-Based Functional Connectivity Visualization Framework for Cognitive State Evaluation;Frontiers in Psychiatry;2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3