Brain and spinal cord paired stimulation coupled with locomotor training facilitates motor output in human spinal cord injury

Author:

Pulverenti Timothy S.,Zaaya Morad,Grabowski Ewelina,Grabowski Monika,Knikou Maria

Abstract

Combined interventions for neuromodulation leading to neurorecovery have gained great attention by researchers to resemble clinical rehabilitation approaches. In this randomized clinical trial, we established changes in the net output of motoneurons innervating multiple leg muscles during stepping when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal (transspinal) stimulation over the thoracolumbar region during locomotor training. TMS was delivered before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Ten individuals with chronic incomplete or complete SCI received at least 20 sessions of training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic assisted step training on a motorized treadmill. Body weight support, leg guidance force and treadmill speed were adjusted based on each subject's ability to step without knee buckling or toe dragging. Most transspinal evoked potentials (TEPs) recorded before and after each intervention from ankle and knee muscles during assisted stepping were modulated in a phase-dependent pattern. Transspinal-TMS and locomotor training affected motor neuron output of knee and ankle muscles with ankle TEPs to be modulated in a phase-dependent manner. TMS-transspinal and locomotor training increased motor neuron output for knee but not for ankle muscles. Our results support that targeted brain and spinal cord stimulation alters responsiveness of neurons over multiple spinal segments in people with chronic SCI. Noninvasive stimulation of the brain and spinal cord along with locomotor training is a novel neuromodulation method that can become a promising modality for rehabilitation in humans after SCI.

Funder

New York State Department of Health - Wadsworth Center

National Institute of Child Health and Human Development

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3