Analyzing and predicting the risk of death in stroke patients using machine learning

Author:

Zhu Enzhao,Chen Zhihao,Ai Pu,Wang Jiayi,Zhu Min,Xu Ziqin,Liu Jun,Ai Zisheng

Abstract

BackgroundStroke is an acute disorder and dysfunction of the focal neurological system that has long been recognized as one of the leading causes of death and severe disability in most regions globally. This study aimed to supplement and exploit multiple comorbidities, laboratory tests and demographic factors to more accurately predict death related to stroke, and furthermore, to make inferences about the heterogeneity of treatment in stroke patients to guide better treatment planning.MethodsWe extracted data from the Medical Information Mart from the Intensive Care (MIMIC)-IV database. We compared the distribution of the demographic factors between the control and death groups. Subsequently, we also developed machine learning (ML) models to predict mortality among stroke patients. Furthermore, we used meta-learner to recognize the heterogeneity effects of warfarin and human albumin. We comprehensively evaluated and interpreted these models using Shapley Additive Explanation (SHAP) analysis.ResultsWe included 7,483 patients with MIMIC-IV in this study. Of these, 1,414 (18.9%) patients died during hospitalization or 30 days after discharge. We found that the distributions of age, marital status, insurance type, and BMI differed between the two groups. Our machine learning model achieved the highest level of accuracy to date in predicting mortality in stroke patients. We also observed that patients who were consistent with the model determination had significantly better survival outcomes than the inconsistent population and were better than the overall treatment group.ConclusionWe used several highly interpretive machine learning models to predict stroke prognosis with the highest accuracy to date and to identify heterogeneous treatment effects of warfarin and human albumin in stroke patients. Our interpretation of the model yielded a number of findings that are consistent with clinical knowledge and warrant further study and verification.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3