Dosage consideration for transcranial direct current stimulation in post-stroke dysphagia: A systematic review and network meta-analysis

Author:

Xie Jianwei,Zhou Chiteng,Ngaruwenayo Gilbert,Wu Minghui,Jiang Xiaoyu,Li Xiaohan

Abstract

ObjectiveThis systematic review and network meta-analysis sought to determine the efficacy of different intensities of transcranial direct current stimulation (tDCS) in patients with dysphagia after stroke to improve swallowing function.MethodsRandomized-controlled trials (RCTs) of tDCS in post-stroke dysphagia were searched from Pubmed, EMBASE, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Service System (SinoMed), Wanfang database, and Chinese Scientific Journals Database (VIP) from databases' inception to June 22, 2022. Article screening, data extraction, and article quality evaluation were completed by 2 independent researchers. Network meta-analysis was performed using Stata.ResultsA final total of 20 studies involving 838 stroke patients were included. The included control interventions were sham tDCS and conventional therapy (CT). Network meta-analysis showed that 20 min of 1.2, 1.4, 1.5, 1.6, and 2 mA anodal tDCS and 30 min of 2 mA anodal tDCS significantly improved post-stroke dysphagia compared with CT (all P < 0.05). In addition, 20 min of 1, 1.4, 1.6, and 2 mA anodal tDCS also significantly improved post-stroke dysphagia compared with sham tDCS (all P < 0.05). Our results demonstrated that 20 min of stimulation at 1.4 mA was the optimal parameters for anodal tDCS and exhibited superior efficacy to CT [SMD = 1.08, 95% CI (0.46, 1.69)] and sham tDCS [SMD = 1.45, 95% CI (0.54, 2.36)].ConclusionDifferent durations and intensities of anodal tDCS are effective in improving post-stroke dysphagia. However, 20 min of tDCS at 1.4 mA may be the optimal regimen.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42022342506.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3