The effects of general anesthetics on mitochondrial structure and function in the developing brain

Author:

Hogarth Kaley,Tarazi Doorsa,Maynes Jason T.

Abstract

The use of general anesthetics in modern clinical practice is commonly regarded as safe for healthy individuals, but exposures at the extreme ends of the age spectrum have been linked to chronic cognitive impairments and persistent functional and structural alterations to the nervous system. The accumulation of evidence at both the epidemiological and experimental level prompted the addition of a warning label to inhaled anesthetics by the Food and Drug Administration cautioning their use in children under 3  years of age. Though the mechanism by which anesthetics may induce these detrimental changes remains to be fully elucidated, increasing evidence implicates mitochondria as a potential primary target of anesthetic damage, meditating many of the associated neurotoxic effects. Along with their commonly cited role in energy production via oxidative phosphorylation, mitochondria also play a central role in other critical cellular processes including calcium buffering, cell death pathways, and metabolite synthesis. In addition to meeting their immense energy demands, neurons are particularly dependent on the proper function and spatial organization of mitochondria to mediate specialized functions including neurotransmitter trafficking and release. Mitochondrial dependence is further highlighted in the developing brain, requiring spatiotemporally complex and metabolically expensive processes such as neurogenesis, synaptogenesis, and synaptic pruning, making the consequence of functional alterations potentially impactful. To this end, we explore and summarize the current mechanistic understanding of the effects of anesthetic exposure on mitochondria in the developing nervous system. We will specifically focus on the impact of anesthetic agents on mitochondrial dynamics, apoptosis, bioenergetics, stress pathways, and redox homeostasis. In addition, we will highlight critical knowledge gaps, pertinent challenges, and potential therapeutic targets warranting future exploration to guide mechanistic and outcomes research.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3