Layer-dependent stability of intracortical recordings and neuronal cell loss

Author:

Urdaneta Morgan E.,Kunigk Nicolas G.,Peñaloza-Aponte Jesus D.,Currlin Seth,Malone Ian G.,Fried Shelley I.,Otto Kevin J.

Abstract

Intracortical recordings can be used to voluntarily control external devices via brain-machine interfaces (BMI). Multiple factors, including the foreign body response (FBR), limit the stability of these neural signals over time. Current clinically approved devices consist of multi-electrode arrays with a single electrode site at the tip of each shank, confining the recording interface to a single layer of the cortex. Advancements in manufacturing technology have led to the development of high-density electrodes that can record from multiple layers. However, the long-term stability of neural recordings and the extent of neuronal cell loss around the electrode across different cortical depths have yet to be explored. To answer these questions, we recorded neural signals from rats chronically implanted with a silicon-substrate microelectrode array spanning the layers of the cortex. Our results show the long-term stability of intracortical recordings varies across cortical depth, with electrode sites around L4-L5 having the highest stability. Using machine learning guided segmentation, our novel histological technique, DeepHisto, revealed that the extent of neuronal cell loss varies across cortical layers, with L2/3 and L4 electrodes having the largest area of neuronal cell loss. These findings suggest that interfacing depth plays a major role in the FBR and long-term performance of intracortical neuroprostheses.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3