Magnetoencephalography-based approaches to epilepsy classification

Author:

Pan Ruoyao,Yang Chunlan,Li Zhimei,Ren Jiechuan,Duan Ying

Abstract

Epilepsy is a chronic central nervous system disorder characterized by recurrent seizures. Not only does epilepsy severely affect the daily life of the patient, but the risk of premature death in patients with epilepsy is three times higher than that of the normal population. Magnetoencephalography (MEG) is a non-invasive, high temporal and spatial resolution electrophysiological data that provides a valid basis for epilepsy diagnosis, and used in clinical practice to locate epileptic foci in patients with epilepsy. It has been shown that MEG helps to identify MRI-negative epilepsy, contributes to clinical decision-making in recurrent seizures after previous epilepsy surgery, that interictal MEG can provide additional localization information than scalp EEG, and complete excision of the stimulation area defined by the MEG has prognostic significance for postoperative seizure control. However, due to the complexity of the MEG signal, it is often difficult to identify subtle but critical changes in MEG through visual inspection, opening up an important area of research for biomedical engineers to investigate and implement intelligent algorithms for epilepsy recognition. At the same time, the use of manual markers requires significant time and labor costs, necessitating the development and use of computer-aided diagnosis (CAD) systems that use classifiers to automatically identify abnormal activity. In this review, we discuss in detail the results of applying various different feature extraction methods on MEG signals with different classifiers for epilepsy detection, subtype determination, and laterality classification. Finally, we also briefly look at the prospects of using MEG for epilepsy-assisted localization (spike detection, high-frequency oscillation detection) due to the unique advantages of MEG for functional area localization in epilepsy, and discuss the limitation of current research status and suggestions for future research. Overall, it is hoped that our review will facilitate the reader to quickly gain a general understanding of the problem of MEG-based epilepsy classification and provide ideas and directions for subsequent research.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3