Experimental demonstration of coupled differential oscillator networks for versatile applications

Author:

Jiménez Manuel,Núñez Juan,Shamsi Jafar,Linares-Barranco Bernabé,Avedillo María J.

Abstract

Oscillatory neural networks (ONNs) exhibit a high potential for energy-efficient computing. In ONNs, neurons are implemented with oscillators and synapses with resistive and/or capacitive coupling between pairs of oscillators. Computing is carried out on the basis of the rich, complex, non-linear synchronization dynamics of a system of coupled oscillators. The exploited synchronization phenomena in ONNs are an example of fully parallel collective computing. A fast system’s convergence to stable states, which correspond to the desired processed information, enables an energy-efficient solution if small area and low-power oscillators are used, specifically when they are built on the basis of the hysteresis exhibited by phase-transition materials such as VO2. In recent years, there have been numerous studies on ONNs using VO2. Most of them report simulation results. Although in some cases experimental results are also shown, they do not implement the design techniques that other works on electrical simulations report that allow to improve the behavior of the ONNs. Experimental validation of these approaches is necessary. Therefore, in this study, we describe an ONN realized in a commercial CMOS technology in which the oscillators are built using a circuit that we have developed to emulate the VO2 device. The purpose is to be able to study in-depth the synchronization dynamics of relaxation oscillators similar to those that can be performed with VO2 devices. The fabricated circuit is very flexible. It allows programming the synapses to implement different ONNs, calibrating the frequency of the oscillators, or controlling their initialization. It uses differential oscillators and resistive synapses, equivalent to the use of memristors. In this article, the designed and fabricated circuits are described in detail, and experimental results are shown. Specifically, its satisfactory operation as an associative memory is demonstrated. The experiments carried out allow us to conclude that the ONN must be operated according to the type of computational task to be solved, and guidelines are extracted in this regard.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3