Control systems theory revisited: new insights on the brain clocks of time-to-action

Author:

Ferber Sari Goldstein,Weller Aron,Soreq Hermona

Abstract

To outline the complex biological rhythms underlying the time-to-action of goal-oriented behavior in the adult brain, we employed a Boolean Algebra model based on Control Systems Theory. This suggested that “timers” of the brain reflect a metabolic excitation-inhibition balance and that healthy clocks underlying goal-oriented behavior (optimal range of signal variability) are maintained by XOR logic gates in parallel sequences between cerebral levels. Using truth tables, we found that XOR logic gates reflect healthy, regulated time-to-action events between levels. We argue that the brain clocks of time-to-action are active within multileveled, parallel-sequence complexes shaped by experience. We show the metabolic components of time-to-action in levels ranging from the atom level through molecular, cellular, network and inter-regional levels, operating as parallel sequences. We employ a thermodynamic perspective, suggest that clock genes calculate free energy versus entropy and derived time-to-action level-wise as a master controller, and show that they are receivers, as well as transmitters of information. We argue that regulated multileveled time-to-action processes correspond to Boltzmann’s thermodynamic theorem of micro- and macro-states, and that the available metabolic free-energy-entropy matrix determines the brain’s reversible states for its age-appropriate chrono-properties at given moments. Thus, healthy timescales are not a precise number of nano- or milliseconds of activity nor a simple phenotypic distinction between slow vs. quick time-to-action, but rather encompass a range of variability, which depends on the molecules’ size and dynamics with the composition of receptors, protein and RNA isoforms.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3