Insights into early pathogenesis of sporadic Alzheimer’s disease: role of oxidative stress and loss of synaptic proteins

Author:

Ansari Mubeen A.,Rao Muddanna Sakkattu,Al-Jarallah Aishah

Abstract

Oxidative stress, induced by impaired insulin signaling in the brain contributes to cognitive loss in sporadic Alzheimer’s disease (sAD). This study evaluated early hippocampal oxidative stress, pre- and post-synaptic proteins in intraperitoneal (IP) and intracerebroventricular (ICV) streptozotocin (STZ) models of impaired insulin signaling. Adult male Wistar rats were injected with STZ, IP, or ICV, and sacrificed 1-, 3-, or 6-weeks post injection. Rat’s cognitive behavior was assessed using Morris water maze (MWM) tests at weeks 3 and 6. Hippocampal synaptosomal fractions were examined for oxidative stress markers and presynaptic [synapsin I, synaptophysin, growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25)] and postsynaptic [drebrin, synapse-associated protein-97 (SAP-97), postsynaptic density protein-95 (PSD-95)] proteins. IP-STZ and ICV-STZ treatment impaired rat’s cognition, decreased the levels of reduced glutathione (GSH) and increased the levels of thiobarbituric acid reactive species (TBARS) in a time dependent manner. In addition, it reduced the expression of pre- and post-synaptic proteins in the hippocampus. The decline in cognition is significantly correlated with the reduction in synaptic proteins in the hippocampus. In conclusion, impaired insulin signaling in the brain is deleterious in causing early synaptosomal oxidative damage and synaptic loss that exacerbates with time and correlates with cognitive impairments. Our data implicates oxidative stress and synaptic protein loss as an early feature of sAD and provides insights into early biochemical and behavioral changes during disease progression.

Publisher

Frontiers Media SA

Subject

General Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3