Severity-dependent functional connectome and the association with glucose metabolism in the sensorimotor cortex of Parkinson's disease

Author:

Zang Zhenxiang,Song Tianbin,Li Jiping,Nie Binbin,Mei Shanshan,Zhang Yuqing,Lu Jie

Abstract

Functional MRI studies have achieved promising outcomes in revealing abnormal functional connectivity in Parkinson's disease (PD). The primary sensorimotor area (PSMA) received a large amount of attention because it closely correlates with motor deficits. While functional connectivity represents signaling between PSMA and other brain regions, the metabolic mechanism behind PSMA connectivity has rarely been well established. By introducing hybrid PET/MRI scanning, the current study enrolled 33 advanced PD patients during medication-off condition and 25 age-and-sex-matched healthy controls (HCs), aiming to not only identify the abnormal functional connectome pattern of the PSMA, but also to simultaneously investigate how PSMA functional connectome correlates with glucose metabolism. We calculated degree centrality (DC) and the ratio of standard uptake value (SUVr) using resting state fMRI and 18F-FDG-PET data. A two-sample t-test revealed significantly decreased PSMA DC (PFWE < 0.014) in PD patients. The PSMA DC also correlated negatively with H-Y stage (P = 0.031). We found a widespread reduction of H-Y stage associated (P-values < 0.041) functional connectivity between PSMA and the visual network, attention network, somatomotor network, limbic network, frontoparietal network as well as the default mode network. The PSMA DC correlated positively with FDG-uptake in the HCs (P = 0.039) but not in the PD patients (P > 0.44). In summary, we identified disease severity-dependent PSMA functional connectome which in addition uncoupled with glucose metabolism in PD patients. The current study highlighted the critical role of simultaneous PET/fMRI in revealing the functional-metabolic mechanism in the PSMA of PD patients.

Publisher

Frontiers Media SA

Subject

General Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3