Scanner agnostic large-scale evaluation of MS lesion delineation tool for clinical MRI

Author:

Hindsholm Amalie Monberg,Andersen Flemming Littrup,Cramer Stig Præstekjær,Simonsen Helle Juhl,Askløf Mathias Gæde,Magyari Melinda,Madsen Poul Nørgaard,Hansen Adam Espe,Sellebjerg Finn,Larsson Henrik Bo Wiberg,Langkilde Annika Reynberg,Frederiksen Jette Lautrup,Højgaard Liselotte,Ladefoged Claes Nøhr,Lindberg Ulrich

Abstract

IntroductionPatients with MS are MRI scanned continuously throughout their disease course resulting in a large manual workload for radiologists which includes lesion detection and size estimation. Though many models for automatic lesion segmentation have been published, few are used broadly in clinic today, as there is a lack of testing on clinical datasets. By collecting a large, heterogeneous training dataset directly from our MS clinic we aim to present a model which is robust to different scanner protocols and artefacts and which only uses MRI modalities present in routine clinical examinations.MethodsWe retrospectively included 746 patients from routine examinations at our MS clinic. The inclusion criteria included acquisition at one of seven different scanners and an MRI protocol including 2D or 3D T2-w FLAIR, T2-w and T1-w images. Reference lesion masks on the training (n = 571) and validation (n = 70) datasets were generated using a preliminary segmentation model and subsequent manual correction. The test dataset (n = 100) was manually delineated. Our segmentation model https://github.com/CAAI/AIMS/ was based on the popular nnU-Net, which has won several biomedical segmentation challenges. We tested our model against the published segmentation models HD-MS-Lesions, which is also based on nnU-Net, trained with a more homogenous patient cohort. We furthermore tested model robustness to data from unseen scanners by performing a leave-one-scanner-out experiment.ResultsWe found that our model was able to segment MS white matter lesions with a performance comparable to literature: DSC = 0.68, precision = 0.90, recall = 0.70, f1 = 0.78. Furthermore, the model outperformed HD-MS-Lesions in all metrics except precision = 0.96. In the leave-one-scanner-out experiment there was no significant change in performance (p < 0.05) between any of the models which were only trained on part of the dataset and the full segmentation model.ConclusionIn conclusion we have seen, that by including a large, heterogeneous dataset emulating clinical reality, we have trained a segmentation model which maintains a high segmentation performance while being robust to data from unseen scanners. This broadens the applicability of the model in clinic and paves the way for clinical implementation.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3