Sex differences in hippocampal β-amyloid accumulation in the triple-transgenic mouse model of Alzheimer’s disease and the potential role of local estrogens

Author:

Hu Yu-Ting,Chen Xin-Lu,Zhang Ya-Nan,McGurran Hugo,Stormmesand Jochem,Breeuwsma Nicole,Sluiter Arja,Zhao Juan,Swaab Dick,Bao Ai-Min

Abstract

IntroductionEpidemiological studies show that women have a higher prevalence of Alzheimer’s disease (AD) than men. Peripheral estrogen reduction during aging in women is proposed to play a key role in this sex-associated prevalence, however, the underlying mechanism remains elusive. We previously found that transcription factor early growth response-1 (EGR1) significantly regulates cholinergic function. EGR1 stimulates acetylcholinesterase (AChE) gene expression and is involved in AD pathogenesis. We aimed to investigate whether the triple-transgenic AD (3xTg-AD) mice harboring PS1M146V, APPSwe, and TauP301L show sex differences in β-amyloid (Aβ) and hyperphosphorylated tau (p-Tau), the two primary AD hallmarks, and how local 17β-estradiol (E2) may regulate the expression of EGR1 and AChE.MethodsWe first sacrificed male and female 3xTg-AD mice at 3–4, 7–8, and 11–12 months and measured the levels of Aβ, p-Tau, EGR1, and AChE in the hippocampal complex. Second, we infected SH-SY5Y cells with lentivirus containing the amyloid precursor protein construct C99, cultured with or without E2 administration we measured the levels of extracellular Aβ and intracellular EGR1 and AChE.ResultsFemale 3xTg-AD mice had higher levels of Aβ compared to males, while no p-Tau was found in either group. In SH-SY5Y cells infected with lentivirus containing the amyloid precursor protein construct C99, we observed significantly increased extracellular Aβ and decreased expression of intracellular EGR1 and AChE. By adding E2 to the culture medium, extracellular Aβ(1–42) was significantly decreased while intracellular EGR1 and AChE expression were elevated.DiscussionThis data shows that the 3xTg-AD mouse model can be useful for studying the human sex differences of AD, but only in regards to Aβ. Furthermore, in vitro data shows local E2 may be protective for EGR1 and cholinergic functions in AD while suppressing soluble Aβ(1–42) levels. Altogether, this study provides further in vivo and in vitro data supporting the human epidemiological data indicating a higher prevalence of AD in women is related to changes in brain estrogen levels.

Publisher

Frontiers Media SA

Subject

General Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3