Role of lysosome in healing neurological disorders by nano-bioengineering

Author:

Raj Aiswarya,Bandyopadhyay Urmi

Abstract

Lysosomes primarily recognized as center for cellular ‘garbage-disposing-unit’, which has recently emerged as a crucial regulator of cellular metabolism. This organelle is a well-known vital player in the pathology including neurodegenerative disorders. In pathological context, removal of intracellular damaged misfolded proteins, organelles and aggregates are ensured by ‘Autophagy’ pathway, which initially recognizes, engulfs and seals the toxic cargo at the cytosolic environment. Thereafter the cell completes the task of encapsulated cargo elimination upon delivery of them to the terminal compartment - lysosome, which contains acid hydrolases, that are capable of degrading the abnormal protein-lipid-repertoire. The merge between inseparable ‘Autophagy’ and ‘Lysosomal’ pathways evolved into ‘Autophagy-Lysosome Pathway (ALP)’, through which cell ultimately degrades and recycles bio-materials for metabolic needs. Dysregulation of any of the steps of the multi-step ALP can contribute to the development and progression of disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Therefore, targeting differential steps of ALP or directly lysosomes using nano-bioengineering approaches holds great promise for therapeutic interventions. This review aims to explore the role of distal autophagy pathway and proximal lysosomal function, as cellular degradative and metabolic hubs, in healing neurological disorders and highlights the contributions of nano-bioengineering in this field. Despite multiple challenges, this review underscores the immense potential of integrating autophagy-lysosomal biology with nano-bioengineering to revolutionize the field and provide novel therapeutic avenues for tackling neurological-neurodegenerative-disorders.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3