Reduced interocular suppression after inverse patching in anisometropic amblyopia

Author:

Hu Jingyi,Chen Jing,Ku Yixuan,Yu Minbin

Abstract

PurposeRecent investigations observed substantial enhancements in binocular balance, visual acuity, and stereovision among older children and adults with amblyopia by patching the amblyopic eye (i.e., inverse patching) for 2 h daily over 2 months. Despite these promising findings, the precise neural mechanisms underlying inverse patching remain elusive. This study endeavors to delve deeper into the neural alterations induced by inverse patching, focusing on steady-state visual evoked potentials (SSVEPs). We specifically investigate the changes in SSVEPs following monocular deprivation of either the fellow eye or the amblyopic eye in older amblyopic children and adults.MethodTen participants (17.60 ± 2.03 years old; mean ± SEM), clinically diagnosed with anisometropic amblyopia, were recruited for this study. Each participant underwent a 120 min patching session on their fellow eye on the first day, followed by a similar session on their amblyopic eye on the second day. Baseline steady-state visual evoked potentials (SSVEPs) measurements were collected each day prior to patching, with post-patching SSVEPs measurements obtained immediately after the patching session. The experimental design incorporated a binocular rivalry paradigm, utilizing SSVEPs measurements.ResultsThe results revealed that inverse patching induced a heightened influence on neural plasticity, manifesting in a reduction of interocular suppression from the fellow eye to the amblyopic eye. In contrast, patching the fellow eye demonstrated negligible effects on the visual cortex. Furthermore, alterations in interocular suppression subsequent to inverse patching exhibited a correlation with the visual acuity of the amblyopic eye.ConclusionInverse patching emerges as a promising therapeutic avenue for adolescents and adults grappling with severe anisometropic amblyopia that proves refractory to conventional interventions. This innovative approach exhibits the potential to induce more robust neural plasticity within the visual cortex, thereby modulating neural interactions more effectively than traditional amblyopia treatments.

Funder

National Natural Science Foundation of China

Sun Yat-sen University

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3