Author:
Sheoran Himansh,Srivastava Priyanka
Abstract
Cognitive impairment, alterations in mood, emotion dysregulation are just a few of the consequences of depression. Despite depression being reported as the most common mental disorder worldwide, examining depression or risks of depression is still challenging. Emotional reactivity has been observed to predict the risk of depression, but the results have been mixed for negative emotional reactivity (NER). To better understand the emotional response conflict, we asked our participants to describe their feeling in meaningful sentences alongside reporting their reactions to the emotionally evocative words. We presented a word on the screen and asked participants to perform two tasks, rate their feeling after reading the word using the self-assessment manikin (SAM) scale, and describe their feeling using the property generation task. The emotional content was analyzed using a novel machine-learning algorithm approach. We performed these two tasks in blocks and randomized their order across participants. Beck Depression Inventory (BDI) was used to categorize participants into self-reported non-depressed (ND) and depressed (D) groups. Compared to the ND, the D group reported reduced positive emotional reactivity when presented with extremely pleasant words regardless of their arousal levels. However, no significant difference was observed between the D and ND groups for negative emotional reactivity. In contrast, we observed increased sadness and inclination toward low negative context from descriptive content by the D compared to the ND group. The positive content analyses showed mixed results. The contrasting results between the emotional reactivity and emotional content analyses demand further examination between cohorts of self-reported depressive symptoms, no-symptoms, and MDD patients to better examine the risks of depression and help design early interventions.
Reference74 articles.
1. Cognitive vulnerability to depressive symptoms in adolescents in urban and rural Hunan, China: a multiwave longitudinal study.;Abela;J. Abnorm. Psychol.,2011
2. When to use the bonferroni correction.;Armstrong;Ophthalmic Physiol. Opt.,2014
3. Tweeteval: unified benchmark and comparative evaluation for tweet classification;Barbieri;Proceedings of the Findings of the Association for Computational Linguistics: EMNLP,2020
4. Situated simulation in the human conceptual system.;Barsalou;Lang. Cogn. Process.,2003
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献