Reproducing FSL's fMRI data analysis via Nipype: Relevance, challenges, and solutions

Author:

Chen Yibei,Hopp Frederic R.,Malik Musa,Wang Paula T.,Woodman Kylie,Youk Sungbin,Weber René

Abstract

The “replication crisis” in neuroscientific research has led to calls for improving reproducibility. In traditional neuroscience analyses, irreproducibility may occur as a result of issues across various stages of the methodological process. For example, different operating systems, different software packages, and even different versions of the same package can lead to variable results. Nipype, an open-source Python project, integrates different neuroimaging software packages uniformly to improve the reproducibility of neuroimaging analyses. Nipype has the advantage over traditional software packages (e.g., FSL, ANFI, SPM, etc.) by (1) providing comprehensive software development frameworks and usage information, (2) improving computational efficiency, (3) facilitating reproducibility through sufficient details, and (4) easing the steep learning curve. Despite the rich tutorials it has provided, the Nipype community lacks a standard three-level GLM tutorial for FSL. Using the classical Flanker task dataset, we first precisely reproduce a three-level GLM analysis with FSL via Nipype. Next, we point out some undocumented discrepancies between Nipype and FSL functions that led to substantial differences in results. Finally, we provide revised Nipype code in re-executable notebooks that assure result invariability between FSL and Nipype. Our analyses, notebooks, and operating software specifications (e.g., docker build files) are available on the Open Science Framework platform.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3