Predicting VR cybersickness and its impact on visuomotor performance using head rotations and field (in)dependence

Author:

Maneuvrier Arthur,Nguyen Ngoc-Doan-Trang,Renaud Patrice

Abstract

Introduction: This exploratory study aims to participate in the development of the VR framework by focusing on the issue of cybersickness. The main objective is to explore the possibilities of predicting cybersickness using i) field dependence-independence measures and ii) head rotations data through automatic analyses. The second objective is to assess the impact of cybersickness on visuomotor performance.Methods: 40 participants completed a 13.5-min VR immersion in a first-person shooter game. Head rotations were analyzed in both their spatial (coefficients of variations) and temporal dimensions (detrended fluctuations analyses). Exploratory correlations, linear regressions and clusters comparison (unsupervised machine learning) analyses were performed to explain cybersickness and visuomotor performance. Traditional VR human factors (sense of presence, state of flow, video game experience, age) were also integrated.Results: Results suggest that field dependence-independence measured before exposure to VR explain ¼ of the variance of cybersickness, while the Disorientation scale of the Simulator Sickness Questionnaire predicts 16.3% of the visuomotor performance. In addition, automatic analyses of head rotations during immersion revealed two different clusters of participants, one of them reporting more cybersickness than the other.Discussion: These results are discussed in terms of sensory integration and a diminution of head rotations as an avoidance behavior of negative symptoms. This study suggests that measuring field dependence-independence using the (Virtual) Rod and Frame Test before immersion and tracking head rotations using internal sensors during immersion might serve as powerful tools for VR actors.

Publisher

Frontiers Media SA

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3