Harnessing beta-cell replication: advancing molecular insights to regenerative therapies in diabetes

Author:

Vasavada Rupangi C.,Dhawan Sangeeta

Abstract

Diminished functional beta-cell mass is a key pathogenic mechanism underlying both type 1 and type 2 diabetes (T1D and T2D), precipitated by the progressive impairment of insulin secretion, loss of cellular identity, and ultimately, beta-cell death. The replenishment of beta-cell deficit through the transplantation of pancreatic islets from cadaveric donors or beta-cells derived from human embryonic stem cells has shown transformative therapeutic potential. However, the regeneration of functional beta-cell mass in vivo remains an important therapeutic goal, as a more physiological and scalable approach. Effective beta-cell replenishment must address the underlying causes of beta-cell loss, such as cellular stress and autoimmunity, while simultaneously promoting beta-cell regeneration, function, and survival. Advances in the mechanistic underpinnings of beta-cell differentiation, growth, and survival, coupled with cutting-edge high-throughput screening methods have accelerated the discovery of novel therapeutic targets and small-molecule interventions. Current strategies for in vivo beta-cell expansion include modulating the cell-cycle to promote replication, reprogramming non-beta-cell lineages into beta-cells, and enhancing beta-cell survival. However, the limited regenerative capacity and inherently high stress sensitivity of beta-cells pose significant barriers to their in vivo expansion, further complicated by the fundamental conflict between replication and functional maintenance, and the high vulnerability of replicating cells in a metabolically stressed environment. There has been tremendous progress in developing approaches that simultaneously promote beta-cell expansion and function. In this review, we discuss the recent advances in beta-cell expansion, along with remaining challenges and emerging opportunities to address them.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3