Interleukin-6 is dispensable in pituitary normal development and homeostasis but needed for pituitary stem cell activation following local injury

Author:

Laporte Emma,De Vriendt Silke,Hoekx Julie,Vankelecom Hugo

Abstract

Recently, we discovered that the cytokine interleukin-6 (IL-6) acts as a pituitary stem cell-activating factor, both when administered in vivo and when added to stem cell organoid cultures in vitro. Moreover, its expression, predominantly localized in the gland’s stem and mesenchymal cells, promptly increases following damage in the adult pituitary, leading to stem-cell proliferative activation. Given these findings that IL-6 is involved in pituitary stem cell regulation, we addressed the question whether the cytokine has an impact on the pituitary phenotype during active phases of the gland’s remodeling, in particular embryonic development and neonatal maturation, as well as during homeostasis at adulthood and aging, all unknown today. Using the IL-6 knock-out (KO) mouse model, we show that IL-6 is dispensable for pituitary embryonic and neonatal endocrine cell development, as well as for hormonal cell homeostasis in adult and aging glands. The findings match the absence of effects on the stem cell compartment at these stages. However, using this IL-6 KO model, we found that IL-6 is needed for the acute stem-cell proliferative activation reaction upon pituitary injury. Intriguingly, regeneration still occurs which may be due to compensatory behavior by other cytokines which are upregulated in the damaged IL-6 KO pituitary, although at lower but prolonged levels, which might lead to a delayed (and less forceful) stem cell response. Taken together, our study revealed that IL-6 is dispensable for normal pituitary development and homeostasis but plays a key role in the prompt stem cell activation upon local damage, although its presence is not essentially needed for the final regenerative realization.

Funder

Fonds Wetenschappelijk Onderzoek

Onderzoeksraad, KU Leuven

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pituitary stem cells: past, present and future perspectives;Nature Reviews Endocrinology;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3