Optimizing evaluation of endometrial receptivity in recurrent pregnancy loss: a preliminary investigation integrating radiomics from multimodal ultrasound via machine learning

Author:

Yan Shanling,Xiong Fei,Xin Yanfen,Zhou Zhuyu,Liu Wanqing

Abstract

BackgroundRecurrent pregnancy loss (RPL) frequently links to a prolonged endometrial receptivity (ER) window, leading to the implantation of non-viable embryos. Existing ER assessment methods face challenges in reliability and invasiveness. Radiomics in medical imaging offers a non-invasive solution for ER analysis, but complex, non-linear radiomic-ER relationships in RPL require advanced analysis. Machine learning (ML) provides precision for interpreting these datasets, although research in integrating radiomics with ML for ER evaluation in RPL is limited.ObjectiveTo develop and validate an ML model that employs radiomic features derived from multimodal transvaginal ultrasound images, focusing on improving ER evaluation in RPL.MethodsThis retrospective, controlled study analyzed data from 346 unexplained RPL patients and 369 controls. The participants were divided into training and testing cohorts for model development and accuracy validation, respectively. Radiomic features derived from grayscale (GS) and shear wave elastography (SWE) images, obtained during the window of implantation, underwent a comprehensive five-step selection process. Five ML classifiers, each trained on either radiomic, clinical, or combined datasets, were trained for RPL risk stratification. The model demonstrating the highest performance in identifying RPL patients was selected for further validation using the testing cohort. The interpretability of this optimal model was augmented by applying Shapley additive explanations (SHAP) analysis.ResultsAnalysis of the training cohort (242 RPL, 258 controls) identified nine key radiomic features associated with RPL risk. The extreme gradient boosting (XGBoost) model, combining radiomic and clinical data, demonstrated superior discriminatory ability. This was evidenced by its area under the curve (AUC) score of 0.871, outperforming other ML classifiers. Validation in the testing cohort of 215 subjects (104 RPL, 111 controls) confirmed its accuracy (AUC: 0.844) and consistency. SHAP analysis identified four endometrial SWE features and two GS features, along with clinical variables like age, SAPI, and VI, as key determinants in RPL risk stratification.ConclusionIntegrating ML with radiomics from multimodal endometrial ultrasound during the WOI effectively identifies RPL patients. The XGBoost model, merging radiomic and clinical data, offers a non-invasive, accurate method for RPL management, significantly enhancing diagnosis and treatment.

Publisher

Frontiers Media SA

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3