IMPROVE: a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition

Author:

Borch Annie,Carri Ibel,Reynisson Birkir,Alvarez Heli M. Garcia,Munk Kamilla K.,Montemurro Alessandro,Kristensen Nikolaj Pagh,Tvingsholm Siri A.,Holm Jeppe Sejerø,Heeke Christina,Moss Keith Henry,Hansen Ulla Kring,Schaap-Johansen Anna-Lisa,Bagger Frederik Otzen,de Lima Vinicius Araujo Barbosa,Rohrberg Kristoffer S.,Funt Samuel A.,Donia Marco,Svane Inge Marie,Lassen Ulrik,Barra Carolina,Nielsen Morten,Hadrup Sine Reker

Abstract

BackgroundMutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition. MethodTo address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy. ResultsWe evaluated 27 neoepitope characteristics, and created a random forest model, IMPROVE, to predict neoepitope immunogenicity. The presence of hydrophobic and aromatic residues in the peptide binding core were the most important features for predicting neoepitope immunogenicity.ConclusionOverall, IMPROVE was found to significantly advance the identification of neoepitopes compared to other current methods.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3