Development and validation of a prognostic model based on clinical laboratory biomarkers to predict admission to ICU in Omicron variant-infected hospitalized patients complicated with myocardial injury

Author:

Yu Xueying,Li Xiaoguang,Xia Shuai,Lu Tianyu,Zong Ming,Suo Chen,Man Qiuhong,Xiong Lize

Abstract

AimsThe aim of this study was to develop and validate a prognostic model based on clinical laboratory biomarkers for the early identification of high-risk patients who require intensive care unit (ICU) admission among those hospitalized with the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and complicated with myocardial injury (MI).MethodsThis single-center study enrolled 263 hospitalized patients with confirmed Omicron variant infection and concurrent MI. The patients were randomly divided into training and validation cohorts. Relevant variables were collected upon admission, and the least absolute shrinkage and selection operator (LASSO) was used to select candidate variables for constructing a Cox regression prognostic model. The model’s performance was evaluated in both training and validating cohorts based on discrimination, calibration, and net benefit.ResultsOf the 263 eligible patients, 210 were non-ICU patients and 53 were ICU patients. The prognostic model was built using four selected predictors: white blood cell (WBC) count, procalcitonin (PCT) level, C-reactive protein (CRP) level, and blood urea nitrogen (BUN) level. The model showed good discriminative ability in both the training cohort (concordance index: 0.802, 95% CI: 0.716–0.888) and the validation cohort (concordance index: 0.799, 95% CI: 0.681–0.917). For calibration, the predicted probabilities and observed proportions were highly consistent, indicating the model’s reliability in predicting outcomes. In the 21-day decision curve analysis, the model had a positive net benefit for threshold probability ranges of 0.2 to 0.8 in the training cohort and nearly 0.2 to 1 in the validation cohort.ConclusionIn this study, we developed a clinically practical model with high discrimination, calibration, and net benefit. It may help to early identify severe and critical cases among Omicron variant-infected hospitalized patients with MI.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3