Identification of aging-related biomarkers and immune infiltration characteristics in osteoarthritis based on bioinformatics analysis and machine learning

Author:

Zhou JiangFei,Huang Jian,Li ZhiWu,Song QiHe,Yang ZhenYu,Wang Lu,Meng QingQi

Abstract

BackgroundOsteoarthritis (OA) is a degenerative disease closely related to aging. Nevertheless, the role and mechanisms of aging in osteoarthritis remain unclear. This study aims to identify potential aging-related biomarkers in OA and to explore the role and mechanisms of aging-related genes and the immune microenvironment in OA synovial tissue.MethodsNormal and OA synovial gene expression profile microarrays were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) from the Human Aging Genomic Resources database (HAGR). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO), and Gene set variation analysis (GSVA) enrichment analysis were used to uncover the underlying mechanisms. To identify Hub ARDEGs with highly correlated OA features (Hub OA-ARDEGs), Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning methods were used. Furthermore, we created diagnostic nomograms and receiver operating characteristic curves (ROC) to assess Hub OA-ARDEGs’ ability to diagnose OA and predict which miRNAs and TFs they might act on. The Single sample gene set enrichment analysis (ssGSEA) algorithm was applied to look at the immune infiltration characteristics of OA and their relationship with Hub OA-ARDEGs.ResultsWe discovered 87 ARDEGs in normal and OA synovium samples. According to functional enrichment, ARDEGs are primarily associated with inflammatory regulation, cellular stress response, cell cycle regulation, and transcriptional regulation. Hub OA-ARDEGs with excellent OA diagnostic ability were identified as MCL1, SIK1, JUND, NFKBIA, and JUN. Wilcox test showed that Hub OA-ARDEGs were all significantly downregulated in OA and were validated in the validation set and by qRT-PCR. Using the ssGSEA algorithm, we discovered that 15 types of immune cell infiltration and six types of immune cell activation were significantly increased in OA synovial samples and well correlated with Hub OA-ARDEGs.ConclusionSynovial aging may promote the progression of OA by inducing immune inflammation. MCL1, SIK1, JUND, NFKBIA, and JUN can be used as novel diagnostic biomolecular markers and potential therapeutic targets for OA.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3