Evaluation of three formulations based on Polymorphic membrane protein D in mice infected with Chlamydia trachomatis

Author:

Russi Romina Cecilia,del Balzo Diego,Reidel Ivana Gabriela,Alonso Bivou Mariano,Flor Noelia,Lujan Agustín,Sanchez Diego,Damiani María Teresa,Veaute Carolina

Abstract

The significant impact of Chlamydia trachomatis(Ct) infections worldwide highlights the need to develop a prophylactic vaccine that elicits effective immunity and protects the host from the immunopathological effects of Ct infection. The aim of this study was to evaluate a vaccine based on a fragment of the Polymorphic membrane protein D (FPmpD) of C. trachomatis as an immunogen using a heterologous DNA prime-protein boost strategy in female mice Three different formulations were evaluated as protein boost: free recombinant FPmpD (rFPmpD) or rFPmpD formulated with a liposomal adjuvant alternatively supplemented with CpG or a cationic gemini lipopeptide as immunostimulants. The three candidates induced an increase in the cervicovaginal and systemic titers of anti-rFPmpD antibodies in two strains of mice (BALB/c and C57BL/6), with no evidence of fertility alterations. The three formulations induced a rapid and robust humoral immune response upon the Ct challenge. However, the booster with free rFPmpD more efficiently reduced the shedding of infective Ct and prevented the development of immunopathology. The formulations containing adjuvant induced a strong inflammatory reaction in the uterine tissue. Hence, the prime-boost strategy with the adjuvant-free FPmpD vaccine formulation might constitute a promissory candidate to prevent C. trachomatis intravaginal infection.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Reference74 articles.

1. Female Infertility Associated to Chlamydia trachomatis Infection;Luján,2016

2. World Health OrganizationWHO Guidelines for the Treatment of Chlamydia trachomatis.2016

3. Development of a vaccine for Chlamydia trachomatis: challenges and current progress;Timms;Vaccine Dev Ther,2015

4. Chlamydia infection - PAHO/WHO | Pan American Health Organization

5. Action needed on chlamydia vaccines;Starnbach;Trends Microbiol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3