Study of the anticancer effect of new quinazolinone hydrazine derivatives as receptor tyrosine kinase inhibitors

Author:

Mortazavi Motahareh,Divar Masoumeh,Damghani Tahereh,Moosavi Fatemeh,Saso Luciano,Pirhadi Somayeh,Khoshneviszadeh Mehdi,Edraki Najmeh,Firuzi Omidreza

Abstract

The advent of novel receptor tyrosine kinase inhibitors has provided an important therapeutic tool for cancer patients. In this study, a series of quinazolinone hydrazide triazole derivatives were designed and synthesized as novel MET (c-MET) receptor tyrosine kinase inhibitors. The antiproliferative effect of the synthesized compounds was examined against EBC-1, A549, HT-29 and U-87MG cells by MTT assay. MET kinase inhibitory effect was tested by a Homogenous Time Resolved Fluorescence (HTRF) assay. The antiproliferative effect of compounds in a three-dimensional spheroid culture was studied by acid phosphatase (APH) assay, while apoptosis induction was examined by Hoechst 33258 staining. We found that compound CM9 bearing p-bromo benzyl pendant inhibited MET kinase activity at the concentrations of 10–50 μM (% Inhibition = 37.1–66.3%). Compound CM9 showed antiproliferative effect against cancer cells, in particular lung cancer cells with MET amplification (EBC-1) with an IC50 value of 8.6 μM. Moreover, this derivative inhibited cell growth in spheroid cultures in a dose-dependent manner and induced apoptosis in cancer cells. Assessment of inhibitory effect of CM9 against a panel of 18 different protein kinases demonstrated that this compound also inhibits ALK, AXL, FGFR1, FLT1 (VEGFR1) and FLT4 (VEGFR3) more than 50% at 25 μM. Finally, molecular docking and dynamics simulation corroborated the experimental findings and showed critical structural features for the interactions between CM9 and target kinases. The findings of this study present quinazolinone hydrazide triazole derivatives as kinase inhibitors with considerable anticancer effects.

Funder

National Institute for Medical Research Development

Vice-Chancellor for Research, Shiraz University of Medical Sciences

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3