Enhanced performance of glycerol electro-oxidation in alkaline media using bimetallic Au–Cu NPs supported by MWCNTs and reducible metal oxides

Author:

de Gyves Josefina,Molina-Ruiz Luis G.,Rutz-López Erik,Ocampo Ana Lilia,Gutiérrez-Sánchez Alejandro,Munguía-Acevedo Nadia M.,Peña-Medina Frida,Esquivel-Peña Vicente

Abstract

Electrochemical technologies for valorizing glycerol, a byproduct of biodiesel production, into electric energy and value-added chemical products continue to be technologically and economically challenging. In this field, an ongoing challenge is developing more active, stable, and low-cost heterogeneous catalysts for the glycerol electro-oxidation reaction (GlyEOR). This paper reports the influence of the preparation procedure, which involves intermatrix synthesis (Cu and Au NPs), followed by galvanic displacement (Cu–Au NPs) in previously functionalized multi-walled carbon nanotubes (MWCNTs). It also discusses the role of the supports, CeO2 NPs, and TiO2 NPs, obtained by a hydrothermal microwave-assisted procedure, on the electroactivity of a hybrid bimetallic Cu–Au/MWCNT/MO2 catalyst in the GlyEOR in alkaline media. The electrocatalytic behavior was studied and discussed in terms of structure, composition, and electroactivity of the synthesized materials, which were determined by Fourier-transform infrared spectroscopy (FTIR), flame atomic absorption spectroscopy (FAAS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), X-ray photoelectronic spectroscopy (XPS), and cyclic voltammetry (CV). In addition, the role of the oxidation states of Cu and Au in the as-prepared catalysts (Cu/MWCNT, Au/MWCNT, Cu–Au/MWCNT, Cu–Au/MWCNT–CeO2, and Cu–Au/MWCNT–TiO2) was demonstrated. It was concluded that the preparation method of metal NPs for the controlled formation of the most catalytically active oxidation states of Cu and Au, together with the presence of a conductive and oxophilic microenvironment provided by carbon nanotubes and facile reducible oxides in optimized compositions, allows for an increase in the catalytic performance of synthesized catalysts in the GlyEOR.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3