Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode

Author:

Pang Bo,Gan Yongping,Xia Yang,Huang Hui,He Xinping,Zhang Wenkui

Abstract

Lithium-ion batteries (LIBs) are widely used in portable electronic devices, electric vehicles and large scale energy storage, due to their considerable energy density, low cost and long cycle life. However, traditional liquid batteries suffer from safety problems such as leakage, thermal runaway and even explosion. Part of the issues are caused by lithium dendrites puncturing the liquid electrolyte during cycling. In order to achieve the objective of higher safety and energy density, a rigid solid-state electrolyte (SSE) is proposed instead of liquid electrolyte (LE). Thereinto, sulfide SSEs have received of the most attention due to their high ionic conductivity. Among all the sulfide SSEs, argyrodite SSEs are considered to be one of the most promising solid-state electrolytes due to their high ionic conductivity, high thermal stability and good processablity. On the other hand, lithium metal is an ideal material for anode because of its high specific energy, low potential and large storage capacity. However, interfacial problems between argyrodite SSEs and the anode (interfacial reactions, lithium dendrites, etc.) are considered to be important factors affecting their availability. In this mini review, we summarize the behavior, properties and problems arising at the interface between argyrodite SSEs and anode. Strategies to solve interface problems and stabilize interfaces in recent years are also discussed. Finally, a brief outlook about argyrodite SSEs is presented.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3