Estimating the velocity of chemically-driven Janus colloids considering the anisotropic concentration field

Author:

Lei Lijie,Cheng Rong,Zhou Yuxiu,Yang Tiezhu,Liang Beirong,Wang Shuo,Zhang Xinyuan,Lin Guanhua,Zhou Xuemao

Abstract

The application of the active colloids is strongly related to their self-propulsion velocity, which is controlled by the generated anisotropic concentration field. We investigated the effect of this anisotropy on velocity induced by numerical treatments and size of Janus colloids. The far-field approximation is effective in estimating the velocity, even though it neglects the shape effect on the anisotropy of the concentration field. If the surface mobility contrast between the active and the inert part is moderate, the spherical approximation is feasible for sphere-like Janus colloids. Legendre expansion of the concentration field causes artificial anisotropy. Raising the order of the expansion can suppress this effect, but also distorts the concentration field at the top of active part. Thus, the order of the expansion should be chosen carefully depending on the goal of the study. Based on the verified Legendre expansion method and ionic-diffusiophoresis model, we show that due to the size-effect on both the concentration field and the surface mobility, increasing size of colloids can lower the self-propulsion velocity. Our finding is consistent with previous experimental observations without fitting parameter, shedding new light on the self-propulsion mechanism of chemically-driven active colloids. We further show a velocity reversal at high overall ζ potential induced by increasing size, providing a new way for controlling the dynamics of acitve colloids.

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3