Research on the protection of athletes from injury by flexible conjugated materials in sports events

Author:

Liu Jian,Ren Tingting

Abstract

Sports are essential to everyone’s health because they assist athletes to establish physical and mental balance by strengthening muscles and ligaments. High-intensity training and low-quality equipment for sports tend to cause a wide range of injuries to the athlete. Higher education graduates’ regular education and lives are disrupted, either directly or indirectly, by sports injuries. Therefore, understanding the prevalence and root causes of college athletes’ injuries is crucial for enhancing student athletes’ performance and fostering healthy development. The ever-changing nature of injuries associated with sports and the patchy availability of rehabilitation facilities across India cause alarm. Inaccurately identifying players’ physical indications, uncomfortable clothing, and dissatisfaction with sports equipment are among the issues that can arise. The study investigates the potential of nanoparticles combined with sports flexible conjugate materials for injury prevention in athletes. The article proposed nanotechnology combined with flexible conjugated materials in sports events (Nano-FCM-SE) in sports training, explores the possibility of conjugated materials in enhancing the training effects of athletes, monitoring the status of sports, and bettering equipment. Sports equipment can help keep athletes safe by incorporating nanotechnology and flexible conjugated materials with superior optical, electrical, and other capabilities. Convenience, waterproof materials, flexibility, lightweight, aesthetics, breathability, and durability are evaluated for use in Nano-conjugated sports equipment materials. Evidence suggests that using flexible conjugated materials in athletic training can improve athlete performance and help the overall development of sports. The proposed method yields less negative results than MSI-TENG, TCM-MS, and RANSAC. The proposed damage severity model performs poorly relative to competitors (0.2). Compared to conventional models, the given models are effective on equipment. The sports injury protection system reported in this research has 5.17 percentage points greater detection efficiency than the current state of the art. Hierarchical strategies have the best RMSE for athlete safety. The findings of such methodologies in athlete safety on Nano conjugate materials and sports biology on sporting events and equipment underline the importance of precise data for athlete safety and performance.

Publisher

Frontiers Media SA

Subject

General Chemistry

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3