A theoretical study on excited-state dynamical properties and laser cooling of zinc monohydride including spin-orbit couplings

Author:

Li Donghui,Fayyaz Faiza,Bian Wensheng

Abstract

By means of highly accurate ab initio and dynamical calculations, we identify a suitable laser cooling candidate that contains a transition metal element, namely zinc monohydride (ZnH). The internally contracted multireference configuration interaction method is employed to compute the five lowest-lying Λ-S states of ZnH with the spin-orbit coupling effects included, and very good agreement is obtained between our calculated and experimental spectroscopic data. Our findings show that the position of crossing point of the A2Π and B2Σ+ states of ZnH is above the v′ = 2 vibrational level of the A2Π state indicating that the crossings with higher electronic states will have no effect on laser cooling. Hence, we construct a feasible laser-cooling scheme for ZnH using five lasers based on the A2Π1/2 → X2Σ+1/2 transition, which features a large vibrational branching ratio R00 (0.8458), a large number of scattered photons (9.8 × 103) and an extremely short radiative lifetime (64 ns). The present work demonstrates the importance of electronic state crossings and spin-orbit couplings in the study of molecular laser cooling.

Funder

National Natural Science Foundation of China

Beijing National Laboratory for Molecular Sciences

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3