Transmembrane Fluoride Transport by a Cyclic Azapeptide With Two β-Turns

Author:

Zhao Zhixing,Zhang Miaomiao,Tang Bailing,Weng Peimin,Zhang Yueyang,Yan Xiaosheng,Li Zhao,Jiang Yun-Bao

Abstract

Diverse classes of anion transporters have been developed, most of which focus on the transmembrane chloride transport due to its significance in living systems. Fluoride transport has, to some extent, been overlooked despite the importance of fluoride channels in bacterial survival. Here, we report the design and synthesis of a cyclic azapeptide (a peptide-based N-amidothiourea, 1), as a transporter for fluoride transportation through a confined cavity that encapsulates fluoride, together with acyclic control compounds, the analogs 2 and 3. Cyclic receptor 1 exhibits more stable β-turn structures than the control compounds 2 and 3 and affords a confined cavity containing multiple inner –NH protons that serve as hydrogen bond donors to bind anions. It is noteworthy that the cyclic receptor 1 shows the capacity to selectively transport fluoride across a lipid bilayer on the basis of the osmotic and fluoride ion-selective electrode (ISE) assays, during which an electrogenic anion transport mechanism is found operative, whereas no transmembrane transport activity was found with 2 and 3, despite the fact that 2 and 3 are also able to bind fluoride via the thiourea moieties. These results demonstrate that the encapsulation of an anionic guest within a cyclic host compound is key to enhancing the anion transport activity and selectivity.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3