Numerical simulations and mathematical models in laser welding: a review based on physics and heat source models

Author:

Jiménez-Xamán M.,Hernández-Hernández M.,Tariq Rasikh,Landa-Damas Saulo,Rodríguez-Vázquez M.,Aranda-Arizmendi A.,Cruz-Alcantar P.

Abstract

The dominant phenomenon in laser welding processes is heat transfer by conduction, making it crucial to gain insights into energy distribution within the heat-affected region, including the melt pool. Thermal analysis enables the description of thermo-mechanical, metallurgical aspects, and also addresses studies related to fluid flow and energy transfer. As research in welding processes has advanced, these models have evolved. This is why it is now efficient to use computational modeling techniques as it allows us to analyze the behavior of laser welding during the process. This underlines the importance of this work which has carried out an exhaustive theoretical literature review with the objective of classifying and describing the numerical simulations of laser welding based on the physics involved. In that sense, the mathematical models and strategies used in laser welding are explored in a general way. Therefore, two types of laser welding by conduction and deep penetration are defined from this point and they are categorized according to the phenomena involved in Model Heat Conduction and Model Integral Multiphysics. This comprehensive review article serves as a valuable resource for higher education students by providing a structured and detailed exploration of laser welding and its mathematical modeling. By classifying and describing numerical simulations based on the physics involved, it offers a framework for students to understand the complexities of this field. Additionally, this innovative approach to organizing and presenting research contributes to educational innovation by facilitating a more efficient and effective learning experience, helping students acquire the knowledge and research skills necessary for advancements in the laser welding domain.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3