Medial Collagen Type and Quantity Influence Mechanical Properties of Aneurysm Wall in Bicuspid Aortic Valve Patients

Author:

Neave Louise,Tahir Maria,Nightingale Miriam,Jadli Anshul S.,Patel Vaibhav B.,Barker Alexander J.,Malaisrie S. Chris,McCarthy Patrick M.,Markl Michael,Fedak Paul W. M.,Di Martino Elena S.

Abstract

Collagen has an essential role in aortic biomechanics, and collagen remodeling has been associated with the development and progression of aortic aneurysm. However, the exact mechanisms behind collagen remodeling and the biomechanical implications are not well understood. This study presents an investigation of the relationship between collagen remodeling in the aortic wall and biomechanics, by means of collagen assays, smooth muscle cell gene expression, and mechanical testing on human aortic specimens collected from patients with bicuspid aortic valve. Collagen assay analysis was employed to determine collagen-I and total collagen content; quantitative real-time PCR was used to determine amountsCOL1A1andCOL3A1expression in the tissue. These parameters were compared with the local biomechanical properties determined from biaxial and uniaxial tensile testing. Collagen-I content was found to relate to improved mechanical properties, while total collagen content did not exhibit a relationship with biomechanics.COL1A1andCOL3A1expression were found to relate to the collagen-I content of the tissue, but not the total collagen content or biomechanical performance. Relationships between variables appeared to be dependent on the collagen content in specific layers of the aortic wall. The effect of age is also noted, as total collagen content and biomechanics were found to have significant associations with increasing age, while collagen-I content and collagen gene expression did not exhibit any correlation. Varying relationships were observed when looking at younger versus older patients. Findings highlight the importance of type and location in determining the influence of collagen on aortic biomechanics, as well as the role of gene expression in the onset and progression of collagen remodeling in aortic aneurysm.

Funder

Natural Sciences and Engineering Research Council of Canada

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3