Monitoring ammonia concentrations in more than 10 stations in the Po Valley for the period 2007–2022 in relation to the evolution of different sources

Author:

Colombi C.,D’Angelo L.,Biffi B.,Cuccia E.,Dal Santo U.,Lanzani G.

Abstract

Regarding secondary aerosols, in addition to the significant contribution of anthropogenic gases such as NOx and SO2, atmospheric ammonia (NH3) plays a crucial role as the primary basic gaseous species capable of neutralizing acidic compounds. This acid–base reaction is responsible for the formation of ammonium nitrate (NH4NO3), constituting up to 60% of PM10 within the Po River basin in Italy. Ion chromatographic analyses performed on offline samples indicate that this secondary inorganic species exhibits minimal concentration variability over the Po Valley because of limited air circulation due to orography and mesoscale air circulation. Therefore, investigating gaseous precursors becomes crucial. From the northern to the southern part of Lombardy—the region at the center of the basin—NH3 emission amounts account for 2.5, 11.1, and 27.7 t/y/km2, mainly due to agriculture and livestock activities (∼97%). To study NH3 temporal and spatial variability, the Environmental Protection Agency of Lombardy Region has been monitoring NH3 concentrations across its territory since 2007, with 10 active monitoring sites. Annual and seasonal cycles are presented, along with a focus on different stations, including urban, low-mountain background, high-impact livestock, and rural background, highlighting the impact of various sources. Measurements indicate that within the Po basin, NH3 concentrations can reach up to 700 µg/m3 (as an hourly average) in proximity to the main gaseous NH3 source. Instrument intercomparisons among online monitors and passive vials, as well as different online monitors, are presented. Therefore, this paper provides crucial data to understand the formation of secondary inorganic aerosols in one of the most important hotspot sites for air pollution.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3