Metagenomic next-generation sequencing for detecting Aspergillosis pneumonia in immunocompromised patients: a retrospective study

Author:

Shi Yan,Peng Jin-Min,Hu Xiao-Yun,Yang Qi-Wen,Wang Yao

Abstract

PurposeThe identification of Aspergillus by metagenomic next-generation sequencing (mNGS) remains a challenging task due to the difficulty of nucleic acid extraction. The objective of this study was to determine whether mNGS could provide an accurate and efficient method for detecting invasive pulmonary aspergillosis (IPA) in immunocompromised patients (ICP).MethodsA total of 133 ICP admitted to the ICU between January 2020 and September 2022 were enrolled in the study, of which 46 were diagnosed with IPA and 87 were non-IPA cases. The bronchoalveolar lavage fluid (BALF) was analyzed for the presence of Aspergillosis and other co-pathogens using mNGS, and its diagnostic performance was compared to conventional microbial tests (CMTs) that included smear, cultures, serum and BALF galactomannan (GM) test. Clinical composite diagnosis was used as the reference standardResultsmNGS had a sensitivity, specificity, and accuracy of 82.6%, 97.7%, and 92.5%, respectively, in diagnosing IPA. These findings were comparable to those of the combination of multiple CMTs. Interestingly, the sensitivity of mNGS was superior to that of any single CMT method, as demonstrated by comparisons with smears (8.7%, P < 0.001), culture (39.1%, P < 0.001), serum GM (23.9%, P < 0.001) and BALF GM (69.6%, P = 0.031). mNGS was capable of accurately distinguish strains of Aspergillus genus, with a consistency of 77.8% with culture. Furthermore, mNGS also identified A. fumigatus, A. flavus, A. terrestris, A. oryzae and Mucor spp. in culture-negative cases. The sequencing reads of Aspergillus by mNGS exhibited extensive variation, ranging from 11 to1702. A positive correlation was observed between the optical density index of BALF GM and unique reads by mNGS (r = 0.607, P = 0.001) in BALF-GM positive patients. Notably, mNGS was able to diagnose 35 out of 37 cases with mixed infection, with P. jirovecii and cytomegalovirus being the most common co-pathogens.ConclusionsmNGS presents a feasible and remarkably sensitive approach for detecting Aspergillus in ICP, thereby serving as a valuable adjunctive tool to CMT. Furthermore, mNGS’s ability to accurately identify fungal species and co-pathogens can assist in guiding appropriate antimicrobial therapy.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3