Attenuation of Yersinia pestis fyuA Mutants Caused by Iron Uptake Inhibition and Decreased Survivability in Macrophages

Author:

Chen Yulu,Song Kai,Chen Xin,Li Ye,Lv Ruichen,Zhang Qingwen,Cui Yujun,Bi Yujing,Han Yanping,Tan Yafang,Du Zongmin,Yang Ruifu,Qi Zhizhen,Song Yajun

Abstract

Yersinia pestis is the etiological agent of plague, a deadly infectious disease that has caused millions of deaths throughout history. Obtaining iron from the host is very important for bacterial pathogenicity. Y. pestis possesses many iron uptake systems. Yersiniabactin (Ybt) plays a major role in iron uptake in vivo and in vitro, and in virulence toward mice as well. FyuA, a β-barrel TonB-dependent outer membrane protein, serves as the receptor for Ybt. In this study, we examined the role of the fyuA gene in Y. pestis virulence using different challenging ways and explored the underlying mechanisms. The BALB/c mouse infection assay showed that the virulence of the mutant strains (ΔfyuA and ΔfyuAGCAdel) was lower when compared with that of the wild-type (WT) strain 201. Furthermore, the attenuation of virulence of the mutant strains via subcutaneous and intraperitoneal challenges was far greater than that via intravenous injection. Iron supplementation restored lethality during subcutaneous challenge with the two mutants. Thus, we speculated that the attenuated virulence of the mutant strains toward the mice may be caused by dysfunctional iron uptake. Moreover, ΔfyuA and ΔfyuAGCAdel strains exhibited lower survival rates in murine RAW264.7 macrophages, which might be another reason for the attenuation. We further explored the transcriptomic differences between the WT and mutant strains at different temperatures and found that the expressions of genes related to Ybt synthesis and its regulation were significantly downregulated in the mutant strains. This finding indicates that fyuA might exert a regulatory effect on Ybt. Additionally, the expressions of the components of the type III secretion system were unexpectedly upregulated in the mutants, which is inconsistent with the conventional view that the upregulation of the virulence genes enhances the virulence of the pathogens.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3