Stroboscopic lighting with intensity synchronized to rotation velocity alleviates motion sickness gastrointestinal symptoms and motor disorders in rats

Author:

Mao Yuqi,Pan Leilei,Li Wenping,Xiao Shuifeng,Qi Ruirui,Zhao Long,Wang Junqin,Cai Yiling

Abstract

Motion sickness (MS) is caused by mismatch between conflicted motion perception produced by motion challenges and expected “internal model” of integrated motion sensory pattern formed under normal condition in the brain. Stroboscopic light could reduce MS nausea symptom via increasing fixation ability for gaze stabilization to reduce visuo-vestibular confliction triggered by distorted vision during locomotion. This study tried to clarify whether MS induced by passive motion could be alleviated by stroboscopic light with emitting rate and intensity synchronized to acceleration–deceleration phase of motion. We observed synchronized and unsynchronized stroboscopic light (SSL: 6 cycle/min; uSSL: 2, 4, and 8 cycle/min) on MS-related gastrointestinal symptoms (conditioned gaping and defecation responses), motor disorders (hypoactivity and balance disturbance), and central Fos protein expression in rats receiving Ferris wheel-like rotation (6 cycle/min). The effects of color temperature and peak light intensity were also examined. We found that SSL (6 cycle/min) significantly reduced rotation-induced conditioned gaping and defecation responses and alleviated rotation-induced decline in spontaneous locomotion activity and disruption in balance beam performance. The efficacy of SSL against MS behavioral responses was affected by peak light intensity but not color temperature. The uSSL (4 and 8 cycle/min) only released defecation but less efficiently than SSL, while uSSL (2 cycle/min) showed no beneficial effect in MS animals. SSL but not uSSL inhibited Fos protein expression in the caudal vestibular nucleus, the nucleus of solitary tract, the parabrachial nucleus, the central nucleus of amygdala, and the paraventricular nucleus of hypothalamus, while uSSL (4 and 8 cycle/min) only decreased Fos expression in the paraventricular nucleus of hypothalamus. These results suggested that stroboscopic light synchronized to motion pattern might alleviate MS gastrointestinal symptoms and motor disorders and inhibit vestibular-autonomic pathways. Our study supports the utilization of motion-synchronous stroboscopic light as a potential countermeasure against MS under abnormal motion condition in future.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Sensory Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3