Technology and research on the influence of liquid crystal cladding doped with magnetic Fe3O4 nanoparticles on light propagation in an optical taper sensor

Author:

Niewczas Michał,Stasiewicz Karol A.,Przybysz Natalia,Pakuła Anna,Paczesny Jan,Zbonikowski Rafał,Dziaduszek Jerzy,Kula Przemysław,Jaroszewicz Leszek R.

Abstract

The results obtained for new dual-cladding optical fiber tapers surrounded by liquid crystal (LC) doped with Fe3O4 nanoparticles in a specially developed glass cell are presented. The created structures are sensitive to changes in refractive index values in the surrounding medium caused by modifying external environment parameters. In this investigation, cells are filled with nematic LCs 6CHBT and with the same mixture doped with 0.1 wt% and 0.5 wt% of magnetic nanoparticles (Fe3O4 NPs). The taper is made on a standard single-mode telecommunication fiber, stretched out to a length of 20.0 ± 0.5 mm, and the diameter of the tapers is approximately 15.0 ± 0.3 μm, with a loss lower than 0.5 dB @ 1,550 nm. Measurements are carried out in a wide range covering the visible and infrared ranges in two setups: 1) without a magnetic field, with steering only by voltage and 2) with an applied magnetic field. The presented spectrum results are divided into two ranges according to the parameters of optical spectrum analyzers: 350–1,200 nm and 1,200–2,400 nm. For all investigations, a steering voltage is chosen from the range of 0 to 200 V, which allows for establishing the influence of dopants on transmitted power and time response at different arrangements. Due to the sensitivity of LCs to temperature changes, this paper focuses on measuring at room temperature the effect of the magnetic field on propagation in a fiber optic taper. The proposed solution demonstrates the technology for creating advanced components as a combination of fiber optic technology, LCs, and nanoparticles. The presented results show the possibility of creating new sensors of various external factors such as magnetic or electric fields in miniaturized dimensions.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3