Prospects for deploying microbes against tree-killing beetles (Coleoptera) in Anthropocene

Author:

Gupta Sumanti,Chakraborty Amrita,Roy Amit

Abstract

Forests form rich biodiversity hubs that act as large reservoirs of natural carbon. The spatial and temporal heterogeneity of these complex habitats of forest floors provides ecological services of immense socio-economic importance. However, these socio-economic ecological hotspots are incessantly exposed to multifarious abiotic, biotic, and anthropogenic disturbances, amongst which unpredictable forest pest (i.e., bark beetle) outbreak account for the loss of vegetation and microbiome of measurable quantum. The importance of the microbiome in forming an inseparable functional unit of every host and shaping its interaction with other partners has been well realized. Interestingly, forest pests, including bark beetles, are also reported to rely on their endosymbiotic microbial partners to manipulate tree defense machinery. In contrast, the microbiome forming the holobiont of trees also regulates the overall function and fitness of the host and significantly contributes to tackling these challenging situations. Nevertheless, how the holobiont of trees directly or indirectly influence beetle holobiont is still an enigma. The present review shall elaborate on the role of microbial tools in enhancing tree performance and fitness, which helps counter beetle damage. Besides, it shall also emphasize exploiting the role of microorganisms in acting as biocontrol agents in shielding the trees against beetle destruction. The application of endosymbiont-mediated RNA interference (RNAi) in working with two-tier specificity for controlling beetle devastations shall be discussed as new-age technological advances. All explanations are expected to put forth the potential of the microbial toolbox in offering better and more sustainable beetle management strategies in the future.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Reference258 articles.

1. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.;Adams;Appl. Environ. Microbiol.,2013

2. The use of plant growth promoting microorganisms in the management of soil-borne plant pathogenic organisms;Ajayi;Plant Growth Promoting Microorganisms of Arid Region,2023

3. The importance of adverse soil microbiomes in the light of omics: implications for food safety.;Akinola;Plant Soil Environ.,2020

4. Role of useful fungi in agriculture sustainability;Al-Ani;Recent trends in mycological research: volume 1: agricultural and medical perspective,2021

5. Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a S cots pine forest.;Anderson;N. Phytol.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3