Whole-exome sequencing of calcitonin-producing pancreatic neuroendocrine neoplasms indicates a unique molecular signature

Author:

Döring Claudia,Peer Katharina,Bankov Katrin,Bollmann Carmen,Ramaswamy Annette,Di Fazio Pietro,Wild Peter Johannes,Bartsch Detlef Klaus

Abstract

IntroductionCalcitonin-producing pancreatic neuroendocrine neoplasms (CT-pNENs) are an extremely rare clinical entity, with approximately 60 cases reported worldwide. While CT-pNENs can mimic the clinical and diagnostic features of medullary thyroid carcinoma, their molecular profile is poorly understood.MethodsWhole-exome sequencing (WES) was performed on tumor and corresponding serum samples of five patients with increased calcitonin serum levels and histologically validated calcitonin-positive CT-pNENs. cBioPortal analysis and DAVID gene enrichment analysis were performed to identify dysregulated candidate genes compared to control databases. Immunohistochemistry was used to detect the protein expression of MUC4 and MUC16 in CT-pNEN specimens.ResultsMutated genes known in the literature in pNENs like MEN1 (35% of cases), ATRX (18-20% of cases) and PIK3CA (1.4% of cases) were identified in cases of CT-pNENs. New somatic SNVs in ATP4A, HES4, and CAV3 have not been described in CT- pNENs, yet. Pathogenic germline mutations in FGFR4 and DPYD were found in three of five cases. Mutations of CALCA (calcitonin) and the corresponding receptor CALCAR were found in all five tumor samples, but none of them resulted in protein sequelae or clinical relevance. All five tumor cases showed single nucleotide variations (SNVs) in MUC4, and four cases showed SNVs in MUC16, both of which were membrane-bound mucins. Immunohistochemistry showed protein expression of MUC4 in two cases and MUC16 in one case, and the liver metastasis of a third case was double positive for MUC4 and MUC16. The homologous recombination deficiency (HRD) score of all tumors was low.DiscussionCT-pNENs have a unique molecular signature compared to other pNEN subtypes, specifically involving the FGFR4, DPYD, MUC4, MUC16 and the KRT family genes. However, a major limitation of our study was the relative small number of only five cases. Therefore, our WES data should be interpreted with caution and the mutation landscape in CT-pNENs needs to be verified by a larger number of patients. Further research is needed to explain differences in pathogenesis compared with other pNENs. In particular, multi-omics data such as RNASeq, methylation and whole genome sequencing could be informative.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3