Mutational signature and clonal relatedness of recurrent urothelial carcinomas with aristolochic acid

Author:

Zhu Jie,Ai Qing,Cheng Qiang,Shen Dan,Dong Zhouhuan,Li Jie,Shen Donglai,Wang Wei,Zhang Xu,Li Hongzhao

Abstract

Urothelial carcinomas (UCs) are malignant tumors that arise from the lower and upper urinary tract and are characterized by multiple recurrences. Aristolochic acid (AA) is a potent nephrotoxin and human carcinogen associated with UC. East Asian populations with a high UC prevalence have an unusual genome-wide AA-induced mutational pattern. To address the genomic differences and clonal relatedness between primary and recurrent tumors in the UCs with AA pattern, we investigated the genomic differences and tumor microenvironment (TME) of AA and non-AA UCs. 17 UC patients were recruited, with nine documented AA exposure. Eleven of them showed recurrence. After-surgery tissues of primary and paired recurrent tumors were collected. Capture-based targeted deep sequencing was performed using a commercial panel consisting of 520 cancer-related genes. Tumor-infiltrating lymphocytes (TILs) were identified with an immunofluorescence-based microenvironment analysis panel (MAP). Hierarchical clustering based on the COSMIC signatures confirmed two significant subtypes: AA Sig and non-AA Sig. AA Sig was associated with AA-containing herbal drug intake, recurrence, and higher tumor mutation burden (TMB). The clonal architecture of UCs revealed three types of clonal evolution patterns. Non-AA Sig cohort showed shared clonal origin of primary and recurrent tumors. AA Sig showed heterogeneity and had multiple independent origins. Recurrent tumors as second primary tumors in AA Sig showed immunoreactive TME, indicating a better response with immune checkpoint inhibitor therapy. The AA mutational signature and unique immune profiles are helpful molecular markers to distinguish AA exposure from other carcinogens. These results also provide new insights into the origin of recurrent UCs that could affect treatment strategies.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3