A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases

Author:

Zhong Yang,Yang Yanju,Fang Yingtao,Wang Jiazhou,Hu Weigang

Abstract

PurposeWhile artificial intelligence has shown great promise in organs-at-risk (OARs) auto segmentation for head and neck cancer (HNC) radiotherapy, to reach the level of clinical acceptance of this technology in real-world routine practice is still a challenge. The purpose of this study was to validate a U-net-based full convolutional neural network (CNN) for the automatic delineation of OARs of HNC, focusing on clinical implementation and evaluation.MethodsIn the first phase, the CNN was trained on 364 clinical HNC patients’ CT images with annotated contouring from routine clinical cases by different oncologists. The automated delineation accuracy was quantified using the Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD). To assess efficiency, the time required to edit the auto-contours to a clinically acceptable standard was evaluated by a questionnaire. For subjective evaluation, expert oncologists (more than 10 years’ experience) were randomly presented with automated delineations or manual contours of 15 OARs for 30 patient cases. In the second phase, the network was retrained with an additional 300 patients, which were generated by pre-trained CNN and edited by oncologists until to meet clinical acceptance.ResultsBased on DSC, the CNN performed best for the spinal cord, brainstem, temporal lobe, eyes, optic nerve, parotid glands and larynx (DSC >0.7). Higher conformity for the OARs delineation was achieved by retraining our architecture, largest DSC improvement on oral cavity (0.53 to 0.93). Compared with the manual delineation time, after using auto-contouring, this duration was significantly shortened from hours to minutes. In the subjective evaluation, two observes showed an apparent inclination on automatic OARs contouring, even for relatively low DSC values. Most of the automated OARs segmentation can reach the clinical acceptance level compared to manual delineations.ConclusionsAfter retraining, the CNN developed for OARs automated delineation in HNC was proved to be more robust, efficiency and consistency in clinical practice. Deep learning-based auto-segmentation shows great potential to alleviate the labor-intensive contouring of OAR for radiotherapy treatment planning.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3