A nomogram based on platelet-to-lymphocyte ratio for predicting lymph node metastasis in patients with early gastric cancer

Author:

Wu Hongyu,Liu Wen,Yin Minyue,Liu Lu,Qu Shuting,Xu Wei,Xu Chunfang

Abstract

BackgroundPreoperative assessment of the presence of lymph node metastasis (LNM) in patients with early gastric cancer (EGC) remains difficult. We aimed to develop a practical prediction model based on preoperative pathological data and inflammatory or nutrition-related indicators.MethodsThis study retrospectively analyzed the clinicopathological characteristics of 1,061 patients with EGC who were randomly divided into the training set and validation set at a ratio of 7:3. In the training set, we introduced the least absolute selection and shrinkage operator (LASSO) algorithm and multivariate logistic regression to identify independent risk factors and construct the nomogram. Both internal validation and external validation were performed by the area under the receiver operating characteristic curve (AUC), C-index, calibration curve, and decision curve analysis (DCA).ResultsLNM occurred in 162 of 1,061 patients, and the rate of LNM was 15.27%. In the training set, four variables proved to be independent risk factors (p < 0.05) and were incorporated into the final model, including depth of invasion, tumor size, degree of differentiation, and platelet-to-lymphocyte ratio (PLR). The AUC values were 0.775 and 0.792 for the training and validation groups, respectively. Both calibration curves showed great consistency in the predictive and actual values. The Hosmer–Lemeshow (H-L) test was carried out in two cohorts, showing excellent performance with p-value >0.05 (0.684422, 0.7403046). Decision curve analysis demonstrated a good clinical benefit in the respective set.ConclusionWe established a preoperative nomogram including depth of invasion, tumor size, degree of differentiation, and PLR to predict LNM in EGC patients and achieved a good performance.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3