Genetic Variants of CLEC4E and BIRC3 in Damage-Associated Molecular Patterns-Related Pathway Genes Predict Non-Small Cell Lung Cancer Survival

Author:

Liu Lihua,Liu Hongliang,Luo Sheng,Patz Edward F.,Glass Carolyn,Su Li,Lin Lijuan,Christiani David C.,Wei Qingyi

Abstract

Accumulating evidence supports a role of various damage-associated molecular patterns (DAMPs) in progression of lung cancer, but roles of genetic variants of the DAMPs-related pathway genes in lung cancer survival remain unknown. We investigated associations of 18,588 single-nucleotide polymorphisms (SNPs) in 195 DAMPs-related pathway genes with non-small cell lung cancer (NSCLC) survival in a subset of genotyping data for 1,185 patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the findings in another independent subset of genotyping data for 984 patients from Harvard Lung Cancer Susceptibility Study. We performed multivariate Cox proportional hazards regression analysis, followed by expression quantitative trait loci (eQTL) analysis, Kaplan-Meier survival analysis and bioinformatics functional prediction. We identified that two SNPs (i.e., CLEC4E rs10841847 G>A and BIRC3 rs11225211 G>A) were independently associated with NSCLC overall survival, with adjusted allelic hazards ratios of 0.89 (95% confidence interval=0.82-0.95 and P=0.001) and 0.82 (0.73-0.91 and P=0.0003), respectively; so were their combined predictive alleles from discovery and replication datasets (Ptrend=0.0002 for overall survival). We also found that the CLEC4E rs10841847 A allele was associated with elevated mRNA expression levels in normal lymphoblastoid cells and whole blood cells, while the BIRC3 rs11225211 A allele was associated with increased mRNA expression levels in normal lung tissues. Collectively, these findings indicated that genetic variants of CLEC4E and BIRC3 in the DAMPs-related pathway genes were associated with NSCLC survival, likely by regulating the mRNA expression of the corresponding genes.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3