Deep learning algorithm using bispectrum analysis energy feature maps based on ultrasound radiofrequency signals to detect breast cancer

Author:

Wang Qingmin,Jia Xiaohong,Luo Ting,Yu Jinhua,Xia Shujun

Abstract

BackgroundUltrasonography is an important imaging method for clinical breast cancer screening. As the original echo signals of ultrasonography, ultrasound radiofrequency (RF) signals provide abundant tissue macroscopic and microscopic information and have important development and utilization value in breast cancer detection.MethodsIn this study, we proposed a deep learning method based on bispectrum analysis feature maps to process RF signals and realize breast cancer detection. The bispectrum analysis energy feature maps with frequency subdivision were first proposed and applied to breast cancer detection in this study. Our deep learning network was based on a weight sharing network framework for the input of multiple feature maps. A feature map attention module was designed for multiple feature maps input of the network to adaptively learn both feature maps and features that were conducive to classification. We also designed a similarity constraint factor, learning the similarity and difference between feature maps by cosine distance.ResultsThe experiment results showed that the areas under the receiver operating characteristic curves of our proposed method in the validation set and two independent test sets for benign and malignant breast tumor classification were 0.913, 0.900, and 0.885, respectively. The performance of the model combining four ultrasound bispectrum analysis energy feature maps in breast cancer detection was superior to that of the model using an ultrasound grayscale image and the model using a single bispectrum analysis energy feature map in this study.ConclusionThe combination of deep learning technology and our proposed ultrasound bispectrum analysis energy feature maps effectively realized breast cancer detection and was an efficient method of feature extraction and utilization of ultrasound RF signals.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3