A novel risk classification system based on the eighth edition of TNM frameworks for esophageal adenocarcinoma patients: A deep learning approach

Author:

Shen Qiang,Chen Hongyu

Abstract

ObjectiveTo develop and validate a deep learning predictive model with better performance in survival estimation of esophageal adenocarcinoma (EAC).MethodCases diagnosed between January 2010 and December 2018 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. A deep learning survival neural network was developed and validated based on 17 variables, including demographic information, clinicopathological characteristics, and treatment details. Based on the total risk score derived from this algorithm, a novel risk classification system was constructed and compared with the 8th edition of the tumor, node, and metastasis (TNM) staging system.ResultsOf 7,764 EAC patients eligible for the study, 6,818 (87.8%) were men and the median (interquartile range, IQR) age was 65 (58–72) years. The deep learning model generated significantly superior predictions to the 8th edition staging system on the test data set (C-index: 0.773 [95% CI, 0.757–0.789] vs. 0.683 [95% CI, 0.667–0.699]; P < 0.001). Calibration curves revealed that the deep learning model was well calibrated for 1- and 3-year OS, most points almost directly distributing on the 45° line. Decision curve analyses (DCAs) showed that the novel risk classification system exhibited a more significant positive net benefit than the TNM staging system. A user-friendly and precise web-based calculator with a portably executable file was implemented to visualize the deep learning predictive model.ConclusionA deep learning predictive model was developed and validated, which possesses more excellent calibration and discrimination abilities in survival prediction of EAC. The novel risk classification system based on the deep learning algorithm may serve as a useful tool in clinical decision making given its easy-to-use and better clinical applicability.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3