Differential regional importance mapping for thyroid nodule malignancy prediction with potential to improve needle aspiration biopsy sampling reliability

Author:

Wang Liping,Wang Yuan,Lu Wenliang,Xu Dong,Yao Jincao,Wang Lijing,Xu Lei

Abstract

ObjectiveExisting guidelines for ultrasound-guided fine-needle aspiration biopsy lack specifications on sampling sites, but the number of biopsies improves diagnostic reliability. We propose the use of class activation maps (CAMs) and our modified malignancy-specific heat maps that locate important deep representations of thyroid nodules for class predictions.MethodsWe applied adversarial noise perturbations to the segmented concentric “hot” nodular regions of equal sizes to differentiate regional importance for the malignancy diagnostic performances of an accurate ultrasound-based artificial intelligence computer-aided diagnosis (AI-CADx) system using 2,602 retrospectively collected thyroid nodules with known histopathological diagnosis.ResultsThe AI system demonstrated high diagnostic performance with an area under the curve (AUC) value of 0.9302 and good nodule identification capability with a median dice coefficient >0.9 when compared to radiologists’ segmentations. Experiments confirmed that the CAM-based heat maps reflect the differentiable importance of different nodular regions for an AI-CADx system to make its predictions. No less importantly, the hot regions in malignancy heat maps of ultrasound images in comparison with the inactivated regions of the same 100 malignant nodules randomly selected from the dataset had higher summed frequency-weighted feature scores of 6.04 versus 4.96 rated by radiologists with more than 15 years of ultrasound examination experience according to widely used ultrasound-based risk stratification American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) in terms of nodule composition, echogenicity, and echogenic foci, excluding shape and margin attributes, which could only be evaluated on the whole rather than on the sub-nodular component levels. In addition, we show examples demonstrating good spatial correspondence of highlighted regions of malignancy heat map to malignant tumor cell-rich regions in hematoxylin and eosin-stained histopathological images.ConclusionOur proposed CAM-based ultrasonographic malignancy heat map provides quantitative visualization of malignancy heterogeneity within a tumor, and it is of clinical interest to investigate in the future its usefulness to improve fine-needle aspiration biopsy (FNAB) sampling reliability by targeting potentially more suspicious sub-nodular regions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3