A comparison of machine learning models for predicting urinary incontinence in men with localized prostate cancer

Author:

Hasannejadasl Hajar,Osong Biche,Bermejo Inigo,van der Poel Henk,Vanneste Ben,van Roermund Joep,Aben Katja,Zhang Zhen,Kiemeney Lambertus,Van Oort Inge,Verwey Renee,Hochstenbach Laura,Bloemen Esther,Dekker Andre,Fijten Rianne R. R.

Abstract

IntroductionUrinary incontinence (UI) is a common side effect of prostate cancer treatment, but in clinical practice, it is difficult to predict. Machine learning (ML) models have shown promising results in predicting outcomes, yet the lack of transparency in complex models known as “black-box” has made clinicians wary of relying on them in sensitive decisions. Therefore, finding a balance between accuracy and explainability is crucial for the implementation of ML models. The aim of this study was to employ three different ML classifiers to predict the probability of experiencing UI in men with localized prostate cancer 1-year and 2-year after treatment and compare their accuracy and explainability. MethodsWe used the ProZIB dataset from the Netherlands Comprehensive Cancer Organization (Integraal Kankercentrum Nederland; IKNL) which contained clinical, demographic, and PROM data of 964 patients from 65 Dutch hospitals. Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) algorithms were applied to predict (in)continence after prostate cancer treatment. ResultsAll models have been externally validated according to the TRIPOD Type 3 guidelines and their performance was assessed by accuracy, sensitivity, specificity, and AUC. While all three models demonstrated similar performance, LR showed slightly better accuracy than RF and SVM in predicting the risk of UI one year after prostate cancer treatment, achieving an accuracy of 0.75, a sensitivity of 0.82, and an AUC of 0.79. All models for the 2-year outcome performed poorly in the validation set, with an accuracy of 0.6 for LR, 0.65 for RF, and 0.54 for SVM. ConclusionThe outcomes of our study demonstrate the promise of using non-black box models, such as LR, to assist clinicians in recognizing high-risk patients and making informed treatment choices. The coefficients of the LR model show the importance of each feature in predicting results, and the generated nomogram provides an accessible illustration of how each feature impacts the predicted outcome. Additionally, the model’s simplicity and interpretability make it a more appropriate option in scenarios where comprehending the model’s predictions is essential.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3